

Faculty of: Sciences and Life Sciences Course: Bachelor of Science (Mathematics) Semester: II Subject Code: CHE202-1C Subject Name: Fundamentals of Chemistry II

				Teaching hours/ Week		F >		Evaluation Scheme/ Semester									
Sı No	Categor	Subjec t Code	Subject Name	T h	Tu		Credi t hours			End Semester Exams		Tutorial / Internal Assessment		End Semester		Total	
									Ma rks	Marks	Mar ks	Duratio n	Mark s	Duratio n	Mark s	Duratio n	
3	MINOR	CHE2 02-1C	Fundamentals of Chemistry II	3	-	2	5	4	10 10 05	Assignment Quiz Attendance	50	2	25	1	-	-	100

AIM

- Aware students of the history of chemistry and its scope.
- Acquaint the basic concept of Analytical Chemistry as a subject.
- Basic concepts related to Organic and Analytical chemistry.
- Learn laboratory skills for handling glassware and chemicals for safety purposes.

COURSE CONTENTS

Course Outline for Theory

UNIT	COURSE CONTENT	TEACHING HOURS
Ι	 Chemistry of s-block elements and Coordination Chemistry Hydrogen. and its Chemistry. Alkali and Alkaline Earth Metals: Li, Na, K, Be, Mg, Ca comparative study of elements, oxides, halides, hydroxides, and carbonates. Exceptional properties of Lithium and Beryllium Coordination Chemistry Definition of some terms, Classification of ligands, Chelate, chelating ligand and Chelation, Classification of chelates, Uses of Chelates, Coordination number and Stereochemistry of complexes, and Nomenclature of coordination compounds. 	15
п	 Fundamental Aspects in Organic Chemistry Hybridization, sigma and pi-bonds, hydrogen bond, inductive effect, resonance effect, hyper-conjugation, steric effect, acids and bases, structure and stability of carbocation, carbanions, and free radicals, aromaticity: Benzenoids and Huckel's rule. Electrophilic aromatic substitution Introduction, effect of substituent group, classification of substituent group, electrophilic substitution reactions like Nitration, Sulphonation, Friedal-crafts alkylation and acylation. 	15
III	Water Analysis	15

Analysis of hardness of the water in terms of Total solid and volatile solid, Nonfilterable solid and non-filterable volatile solid, Filterable solid, Total solid, Total Suspended Solid, Acidity, Basicity or Alkalinity Turbidity. Various methods for determining the hardness of water

Catalysis

Introduction, Types of catalyst, Characteristics of catalysis, Theories, Acid-base catalyst, Autocatalysis, Catalytic Promotors and Poison, Negative and positive catalysts, Enzyme catalyst, Applications

Course Outline for Practical

SR. NO	COURSE CONTENT						
	Volumetric Analysis						
	1. Estimation of the amount of Cu^{2+} in the given $CuCl_2.2H_2O$ solution using 0.01M						
	EDTA solution.						
	2. Estimation of the amount of Ni^{2+} in the given $NiSO_4.7H_2O$ solution using 0.01						
1	M EDTA solution.						
	3. Estimation of the amount of Zn^{2+} in the given $ZnCl_2$ solution using 0.01 M EDTA						
	solution.						
	4. Estimation of total, temporary, and permanent hardness of water.						
	5. Determination of acetic acid in commercial vinegar using 0.1 M NaOH						
	Volumetric Analysis						
	1. To prepare a solution of acids and bases with a definite concentration						
	2. To prepare a solution by dissolving 'x' g NaHCO ₃ /Na ₂ CO ₃ in 100 ml solution and						
	determine its concentration in terms of normality and molarity using the given 0.1 M						
	HCl solution						
	3. To determine the normality, molarity, and g/litre of NaOH and HCl using 0.05M						
2	Na ₂ CO ₃ solution						
	4. To determine the molarity, g/litre, and normality of each component in a mixture of						
	H ₂ C ₂ O ₄ .2H ₂ O and H ₂ SO ₄ using 0.02 M KMnO ₄ and 0.1 M NaOH solution						
	5. To determine the normality, molarity and g/lit of KMnO4 and FeSO4.7H2O solution						
	using 0.1 N H₂C₂O₄.2H₂O solution.						
	6. To determine the normality, molarity and g/lit of FeSO4 (NH4)2SO4.6H2O and						
	K2Cr2O7 solutions using 0.1 N KMnO4 solution.						
	Qualitative Analysis of Inorganic Salts						
3	Inorganic salts containing two radicals						
	Anion: SO_3^{-2} , S^{-2} , PO_4^{-3} (Soluble and Insoluble)						
	Cation: Group I to VI positive ions						
	Total Hours = 30						

TEACHING METHODOLOGY

- Conventional method (classroom blackboard teaching)
- ICT Techniques
- Teaching through the classroom, laboratory work
- variety of learning styles and tools (PowerPoint presentations, audio-visual resources, e-resources, seminars, workshops, models)
- Teaching through laboratory work

LEARNING OUTCOME

- Expand the basic knowledge of chemistry
- To understand the fundamentals of thermodynamics
- To learn about various theories of bonding in chemistry
- To acquire knowledge of the nomenclature system of IUPAC
- To learn the basics of analytical chemistry
- Understanding the importance of laboratory work and laboratory safety
- Acquire knowledge about types of glassware and their calibration
- Development of analytical skills by analysis of various organic and Inorganic compounds

ARRANGEMENT OF LECTURE DURATION AND PRACTICAL SESSION AS PER DEFINED CREDIT NUMBERS

Units		Duration Hrs.)	Cre	ation of edits mbers)	Total Lecture Duration	Credit Calculation	
	Theory Practic		Theory	Practical	Theory+ Practical	Theory+ Practical	
Unit – 1	15						
Unit – 2	15	30	3	1	45+30	4	
Unit – 3	15						
TOTAL	45	30	3	1	75	4	

EVALUATION

Theory Marks	Practical Marks	Total Marks
75	25	100

REFERENCE BOOKS

Principles of Inorganic Chemistry 1 B.R. Puri, L.R. Sharma & K.C Kalia, 2 Organic Chemistry Morrison Boyd 3 Principles of Physical Chemistry Puri, Sharma, Pathania. 4 Fundamental of analytical chemistry Skoog & West Vogel's Qualitative Inorganic Analysis 5 G. Svehla, B. Sivasankar 6 Practical Chemistry Pandey, O. P., Bajpai, D. N., Giri, S.